

Search for New Particles Decaying to Dijets in Run 2

Robert M. Harris and Frank Chlebana

Exotics Meeting Jan. 30, 2003

Introduction

Motivation

- Search for resonances.
- Find them or set limits.

Strategy

- Repeat Run 1 analysis as closely as possible.
- We've done this before and can benefit from our run 1 experience
 - → PRD 55, R5263 (1997)
 - → PRL 74, 3538 (1995)
- Allows direct comparison of run 2 with run 1 data.
 - Provides sanity check on jet energy scale.

New Particles That Decay to Dijets

Model	Particle	Production/Decay	J ^P (color) & Γ/2
Chiral Color SU(3)L x SU(3)R	Axigluon A	$ \underbrace{\stackrel{\bar{q}}{\longrightarrow}}_{q} - \underbrace{\stackrel{\bar{q}}{\longrightarrow}}_{q} $	1+(8) .05 M
Extended Technicolor	Coloron C	$\sum_{\mathbf{q}}^{\mathbf{q}} - \underline{\mathbf{c}} - \frac{\mathbf{q}}{\mathbf{q}}$	1 ⁻ (8) ,05 M
Composite Fermions	Excited Quark q*	q q* q* g`	1/2 ⁺ (3) ,02 M
Superstring Inspired E6 Models	Diquarks D, D ^c	$\underbrace{\begin{array}{c} u(\overline{u}) \\ d(\overline{d}) \end{array}}_{\mathbf{d}(\overline{d})} \underbrace{\begin{array}{c} D(\underline{D^{c}}) \\ d(\overline{d}) \end{array}}_{\mathbf{d}(\overline{d})} \underbrace{\begin{array}{c} u(\overline{u}) \\ d(\overline{d}) \end{array}}_{\mathbf{d}(\overline{d})}$	0 ⁺ (3) .004 M

Dijet Mass Analysis

- (CDF 6248)
- As in run 1, use J20, J50, J70 & J100 triggers.
 - → DataAccess ntuples using 4.9.1 reprocessing of Feb Dec 2002 data.
 - → 75 pb⁻¹ after selection of runs good for L1, L2, and Calorimetry (90 pb⁻¹ before).
- As in run 1, we apply the following cuts.

 - → Missing $E_T/sqrt(\Sigma E_T) < 6.0$ to eliminate cosmic rays.
 - \rightarrow $\Sigma E < 2.2 \text{ TeV}$ (2.0 TeV in run 1) to eliminate unphysical noise.
- Get the two highest E_T jets, with cone R=0.7, and correct the energy.
 - → Use latest official jet correction code JetEnergyCorrection.cc on Jan. 15, 2003.
 - Relative correction vs. detector η comes from dijet balancing in all jet samples.
 - Absolute corrections for central response, out-of-cone energy & und event from run 1
 - → Jet E-scale using photon-jet balancing results in run 2 and run 1 from G. Latino.
- As in run 1, require each jet have $|\eta| < 2$, $|\cos \theta^*| = |\tanh([\eta_1 \eta_2]/2)| < 2/3$.
 - Reduces QCD background (t-channel) more than resonances (s-channel)
- As in run 1, dijet mass $M = sqrt(E^2 \overline{p^2})$, where $E = E_1 + E_2$, $\overline{p} = \overline{p_1} + \overline{p_2}$.

Selection Cuts in J100 Sample

Includes all analysis cuts for final sample except cut shown

- z vertex cut is 95% efficient.
 - Vertex strategy 1 algorithm fails on 0.2% of events & z=0.0 is assigned.
- Missing Et significance cut is crucial for elimination of cosmics rays
 - → Efficiency > 99.8% for J100 sample
- Total energy cut for obvious junk.
 - Events removed are at low mass.

Robert M. Harris, Fermilab CD/CDF

Trigger Efficiency and Luminosity

- Use events with full trigger efficiency
 - Measure the trigger efficiencies in analysis bins.
 - Require prior bin to have >99% efficiency.
 - Makes trigger systematics negligible.
 - Avoids falsely pinning background fit.
- Measured prescales agree with the nominal values.

Trigger	Mass Cut (GeV)		Efficiency at Threshold			Luminosity/Prescale (pb ⁻¹)		
	Run 1	Run 2	Run 1A	Run 1B	Run 2	Run 1A	Run 1B	Run 2
Jet 20	180	180	1	1	1.00	19.1/500	87.3/1000	74.9/297
Jet 50	241	217	0.99	0.98	1.00	13.1/20	87.3/40	74.9/20
Jet 70	292	292	0.95	0.96	1.00	19.1/6	87.3 <mark>/8</mark>	74.9/8
Jet 100	388	388	0.97	0.96	1.00	19.1/1	87.3/1	74.9/1

Calculate cross section from rate, luminosity, trigger and z vertex efficiency.

Dijet Mass Distribution

Dijet Mass from Run 2

Robert M. Harris, Fermilab CD/CDF

High Mass Dijet Event

Run 152507 event 1222318

Dijet Mass = 1364 GeV (corr)

 $\cos \theta^* = 0.30$

z vertex = -25 cm

J2 E_T = 633 GeV (corr) J1 E_T = 6 546 GeV (raw) J1 η = -0.30 (detector) J1 η = 6

 $J2 \eta = -0.30 \text{ (detector)}$ = -0.19 (correct z) J1 E_T = 666 GeV (corr) 583 GeV (raw)

J1 η = 0.31 (detector) = 0.43 (correct z)

Corrected E_T and mass are preliminary

Angular Variables & Relative Corrections J100 with M>388 GeV

Robert M. Harris, Fermilab CD/CDF

Dijet Mass from Run 2 & Run 1

Dijet Mass from Run 2 & Run 1

Robert M. Harris, Fermilab CD/CDF

Dijet Mass Ratio: Run 2 / Run 1

Dijet Mass Run 2 / Run 1

Run 2 / Run 1 agrees with theory to ~10% in rate (~1-2% in energy scale)

Dijet Mass Ratio: Run 2 / Run 1

Dijet Mass Run 2 / Run 1

Bin	Run 1	Run 2	QCD
(GeV)	(Evts)	(Evts)	Ratio
1007- 1108	4	7	2.8
1108- 1219	0	1	3.6
1219- 1341	0	2	5.3
1341- 1475	0	1	9.6

More high mass dijets in run 2 because QCD xsec up to 10 times larger!

Dijet Mass Search

Search for resonances

As in Run 1, we fit the dijet mass distribution with a background parameterization inspired by QCD.

$$\frac{ds}{dm} = \frac{p_0 (1 - m/\sqrt{s} - p_1 m^2/s)^{p_2}}{m^{p_3}}$$

- Numerator models the (1-x)ⁿ behavior of parton distributions.
- → Denominator models the 1/m^p behavior of QCD matrix element.
- The fit is good, except perhaps on the tail.
 - P1 controls the downward curvature of the fit at high mass.
 - Constraining P1 > 0.1 fits the tail better, with OK total fit probability.
- No significant evidence of new particles.

Dijet Mass and Four Parameter Fit

Robert M. Harris, Fermilab CD/CDF

Dijet Mass (Data – Fit) / Fit

Dijet Mass Fitt Difference

Robert M. Harris, Fermilab CD/CDF

Dijet Mass Residuals

Robert M. Harris, Fermilab CD/CDF

Dijet Mass fit constraining $P1 \ge 0.1$

Robert M. Harris, Fermilab CD/CDF

New Particle Limits

- Set upper limits on cross section for new particles.
 - Fit data to background parameterization plus a narrow resonance.
 - Use run 1 simulation of narrow resonances for now.
 - Dijet mass resolution (rms ~ 10%) dominates line shape.
 - There is a long tail to lower masses caused by QCD radiation.
 - Calculate likelihood vs. resonances cross section.
 - Statistical binned likelihood distributions and 95% CL limit points.
 - Recalculate limit for each systematic uncertainty shift.
 - Add resulting systematic shifts in quadrature to get total Gaussian sys.
 - Convolute statistical likelihoods with Gaussian systematic uncertainty.
 - Find 95% CL upper bound on new particle cross section.
 - Both with and w/o systematics.
 - Compare cross section upper limits to new particle theory.
 - As in run 1, we use lowest order predictions, but at \sqrt{s} = 1.96 TeV.
 - We have predictions for Axigluons, colorons, q*, and E₆ diquarks.
 - Read off mass limits from the comparison.

Systematics in Limit on Cross Section

Systematics

- Absolute E-Scale
 - → 5% systematic.
- Background Param.
 - Change from 4 to 3 parameter fit.
 - Finds more signal because it fits the data worse.
- Radiation
 - Cut out half of tail to low mass.
- Energy Resolution
 - → 10% in line shape s
- Luminosity.
 - → 10% at this stage.

Systematic Uncertainty in Limit on Cross Section

Likelihood Distributions

- Likelihood w/o systematics (dotted) and with systematics (solid) calclulated every 50 GeV for narrow resonances from 200 to 1150 GeV.
- Poisson like statistical likelihoods get smeared out by large Gaussian systematic.
- Integrate likelihood up to 95% area point to find 95% CL upper limit.

Limits on New Particles

- Preliminary excluded masses of new particles at 95% CL in run 2:
 - Axigluon or Coloron
 - → Run 2: M <1130 GeV
 </p>
 - → Run 1: M < 980 GeV
 </p>
 - Excited Quarks
 - Run 2: M < 760 GeV
 </p>
 - Run 1: M < 760 GeV.</p>
 - E6 Diquark
 - → Run 2: 280<M<420 GeV.
 - → Run 1: 290<M<420 GeV.

Search for New Particles Decaying to Dijets

Conclusions

- We have a preliminary dijet mass distribution in run 2.
 - The analysis was as close as possible to that in run 1.
 - → The ratio of run 2 to run 1 cross section is close to expected from QCD.
- We've searched for new particles decaying to dijets.
 - Mass distribution is smooth & well fit by background parameterization.
 - 95% CL upper limits found on cross section and mass for new particles.
 - → Axigluons or flavor universal colorons excluded for M<1.1 TeV at 95% CL.
 - Excited Quarks excluded for M<760 GeV at 95% CL.</p>
 - E₆ Diquarks excluded for 280<M<420 GeV at 95% CL.
- 1st direct exclusion of particle with mass > 1 TeV at Tevatron!
 - Nun 2 with 75 pb⁻¹ is more sensitive to highest mass physics than run 1.